Фейнмановские лекции по физике. 7. Физика сплошных сред

Фейнман Ричард

Серия: Фейнмановские лекции по физике [7]
Закладки
Размер шрифта
A   A+   A++
Cкачать
Читать
Фейнмановские лекции по физике. 7. Физика сплошных сред (Фейнман Ричард)

Глава 30

ВНУТРЕННЯЯ ГЕОМЕТРИЯ КРИСТАЛЛОВ

§ 1. Внутренняя геометрия кристаллов

§ 2. Химические связи в кристаллах

§ 3. Рост кристаллов

§ 4. Кристаллические решетки

§ 5. Симметрии в двух измерениях

§ 6. Симметрии в трех измерениях

§ 7. Прочность металлов

§ 8. Дислокации и рост кристаллов

§ 9. Модель кристалла по Брэггу и Наю

§ 1. Внутренняя геометрия кристаллов

Мы закончили изучение основных законов электричества и магнетизма и теперь можем заняться электромагнитными свойствами ве­щества. Начнем с изучения твердых тел, точнее кристаллов. Если атомы в веществе движутся не слишком активно, они сцепляются и рас­полагаются в конфигурации с наименьшей возможной энергией. Если атомы где-то разместились так, что их расположения отве­чают самой низкой энергии, то в другом месте атомы создадут такое же расположение. По­этому в твердом веществе расположение ато­мов повторяется.

Иными словами, условия в кристалле тако­вы, что каждый атом окружен определенно расположенными другими атомами, и если посмотреть на атом такого же сорта в другом месте, где-нибудь подальше, то обнаружится, что окружение его и в новом месте точно та­кое же. Если вы выберете атом еще дальше, то еще раз найдете точно такие же условия. Порядок повторяется снова и снова и, конечно, во всех трех измерениях.

Представьте, что вам нужно создать рисунок на обоях или ткани или некий геометрический чертеж для плоской поверхности, в котором (как вы предполагаете) имеется элемент, повто­ряющийся непрерывно снова и снова, так что можно сделать эту поверхность настолько боль­шой, насколько вам захочется. Это двумерный аналог задачи, которая решается в кристалле в трех измерениях. На фиг. 30.1,а показан общий характер рисунка обоев. Один элемент повторяется регулярно, и это может продолжаться бесконечно.

Фиг. 30.1. Повторяющийся рисунок обоев в двух намере­ниях.

Геометрические харак­теристики этого рисунка обоев, учитывающие толь­ко его свойства повторяе­мости и не касающиеся геометрии самого цветка или его художественных достоинств, показаны на фиг. 30.1,б. Если вы возьмете за отправную какую-то точку, то смо­жете найти соответствующую точку, сдвигаясь на расстоя­ние а в направлении, указанном стрелкой 1. Вы можете попасть в соответствующую точку, также сдвинувшись на рас­стояние b в направлении, указанном другой стрелкой. Конечно, имеется еще много других направлений. Так, вы можете из точки a отправиться в точку b и достигнуть соответствующего положения, но такой шаг можно рассматривать как комбина­цию шага в направлении 1 вслед за шагом в направлении 2. Одно из основных свойств ячейки состоит в том, что ее можно описывать двумя кратчайшими шагами к соседним эквивалент­ным расположениям. Под «эквивалентными» расположениями мы подразумеваем такие, что в каком бы из них вы ни находи­лись, поглядев вокруг себя, вы увидите точно то же самое, что и в любом другом положении. Это фундаментальное свойство кристаллов. Единственное различие в том, что кристалл имеет трехмерное, а не двумерное расположение и, естественно, каж­дый элемент решетки представляет не цветы, а какие-то образо­вания из атомов, например шести атомов водорода и двух ато­мов углерода, регулярно повторяющихся. Порядок расположе­ния атомов в кристалле можно исследовать экспериментально с помощью дифракции рентгеновских лучей. Мы кратко упоми­нали об этом методе раньше и не будем добавлять здесь к сказанному чего-либо, а отметим лишь, что точное расположе­ние атомов в пространстве установлено для большинства простых кристаллов, а также для многих довольно сложных кристаллов.

Внутреннее устройство кристалла проявляется по-раз­ному. Во-первых, связующая сила атомов в определенных нап­равлениях сильнее, чем в других направлениях. Это означает, что имеются определенные плоскости, по которым кристалл разбить легче, чем в других направлениях. Они называются плоскостями спайности. Если кристалл расколоть лезвием ножа, то скорее всего он расщепится именно вдоль такой пло­скости. Во-вторых, внутренняя структура часто проявляется в форме кристалла.

Представьте себе, что кристалл образуется из раствора. В растворе плавают атомы, которые в конце концов пристраи­ваются, когда находят положение, отвечающее наименьшей энергии. (Все происходит так, как если бы обои были созданы из цветов, плавающих в разных направлениях до тех пор, пока случайно один из цветков не зацепился бы накрепко за определенную точку, за ним другой и т. д., пока постепенно не образовался узор.) Вы, вероятно, догадываетесь, что в одних направлениях кристалл будет расти быстрее, чем в других, создавая по мере роста некоторую геометрическую форму. Именно поэтому внешняя поверхность многих кристаллов но­сит на себе отпечаток внутреннего расположения атомов.

В качестве примера на фиг. 30.2,a показана типичная форма кристалла кварца, ячейка которого гексагональна. Если вы внимательно посмотрите на этот кристалл, то обнаружите, что его внешние грани образуют не слишком хороший шестиуголь­ник, потому что не все стороны имеют одинаковую длину, а часто бывают даже совсем разными.

Фиг.30.2. Природный кристалл кварца (а), крупинки соли (б) и слюды (в).

Но в одном отношении этот шестиугольник вполне правильный: углы между гранями составляют в точности 120°. Ясное дело, размер той или иной грани случайно складывается в процессе роста, но в углах проявляется геометрия внутреннего устройства. Поэтому все кристаллы кварца имеют разную форму, но в то же время углы между соответствующими гранями всегда одни и те же.

Внутреннее геометрическое устройство кристалла хлори­стого натрия также легко понять из его внешней формы.

На фиг. 30.2, б показана типичная форма крупинки соли. Это опять не совершенный куб, но грани действительно перпендикулярны друг другу. Более сложный кристалл — это слюда, он имеет форму, изображенную на фиг 30.2, в. Этот кристалл в высшей степени анизотропен — он очень прочен в одном направлении (на рисунке — горизонтальном) и его трудно расколоть, а в другом направлении он легко расщепляется (в вертикальном). Обычно он используется для получения очень прочных, тонких листов. Слюда и кварц — примеры природных минералов, содержащих кремний. Третий минерал, содержащий кремний,— это асбест, обладающий тем интересным свойством, что его легко растянуть в двух направлениях, а в третьем он не поддается растягиванию. Создается впечатление, что он сделан из очень прочных нитей.

§ 2. Химические связи в кристаллах

Механические свойства кристаллов несомненно зависят от рода химических связей между атомами. Поражающая неоди­наковая прочность слюды по разным направлениям зависит от характера межатомной связи в этих направлениях. Вам на­верняка уже рассказывали на лекциях по химии о разных ти­пах химических связей. Прежде всего бывают ионные связи, мы уже говорили о них, когда толковали о хлористом натрии. Грубо говоря, атомы натрия теряют по одному электрону и ста­новятся положительными ионами; атомы хлора приобретают электрон и становятся отрицательными ионами. Положитель­ные и отрицательные ионы располагаются в трехмерном шах­матном порядке и удерживаются вместе электрическими си­лами.

Copyrights and trademarks for the book, and other promotional materials are the property of their respective owners. Use of these materials are allowed under the fair use clause of the Copyright Law.