Творчество в математике. По каким правилам ведутся игры разума

Альберти Микель

Серия: Мир математики [20]
Закладки
Размер шрифта
A   A+   A++
Cкачать
Читать
Творчество в математике. По каким правилам ведутся игры разума (Альберти Микель)

Предисловие

Во время игры в шахматы новички и профессионалы следуют одним правилам, но умелый игрок создает комбинации, которые начинающему могут показаться невероятными. Научиться играть в шахматы может любой, но эта игра — не простое перемещение фигур по доске. Игра в шахматы — это творчество.

Несколько тысяч лет назад кому-то пришла в голову идея нанести на камень или кость метки. Каждая из них выражала какой-то мысленный объект. Форма этих меток не имела значения, важна была идея: мысленный объект и метка идентичны друг другу. Позднее разные метки и их группы получили свои названия. Это позволило различать эти группы и определять, какая из них больше, а какая — меньше. Число — несомненно, величайшее математическое творение и, пожалуй, величайшее творение человечества.

Другое великое математическое творение — это система получения математических результатов. Правильность всех выводов тщательно проверяется сообществом экспертов, любые найденные неточности устраняются. Итогом становится теорема — доказанное утверждение, которое может вывести любой, кто повторит рассуждения, приведенные их автором.

Традиционно математики придерживались негласного правила не демонстрировать свои ошибки и некорректные результаты. Опубликованные математические работы безупречны, и это тоже часть традиции. Когда ремесленники выставляют на всеобщее обозрение плоды своего труда, всем известно, что для их создания потребовалось много часов работы. Это обстоятельство делает произведение только ценнее: ни один шедевр не рождается мгновенно — требуется множество проб, ошибок, исправлений.

Иногда создается впечатление, что новые математические теоремы получаются путем сочетания других, уже известных. Заслуга их авторов в том, что они обладали достаточными способностями, чтобы правильно объединить нужные теоремы и применить правила логики. Однако сама по себе логика ничего не производит: нужно что-то, что заставило бы ее работать, и это «что-то» — результат интуиции, аналогий, проб и ошибок. Именно в том, чтобы заставить логику работать, и заключается математическое творчество.

Творить означает создавать что-то новое, ранее неизвестное, поэтому творчество тесно связано с обучением. Если исходить из предпосылки, согласно которой знать математику означает уметь заниматься ею, то основа математического творчества — умение задавать правильные вопросы и находить на них ответы. Именно так действуют профессиональные математики. Доказательство любой теоремы — не конечная цель, а связующее звено, которое заставляет задавать новые вопросы, помогает решать новые задачи и доказывать новые гипотезы. В том, чтобы уметь задавать новые вопросы, и заключается творчество.

Математическое творчество, о котором мы говорим, не является уделом профессионалов — творить математику может любой. Возможно, нечто, созданное математиком-любителем, не будет новым для знатока, но вызовет восторг открытия у его автора. Быть может, этот математик-любитель найдет вдохновение не в теоремах и задачах, а в чем-то из повседневной жизни, в том, что он увидел дома, на работе или в путешествии. Для этого достаточно посмотреть на математику и на окружающую действительность другими глазами.

Однако математическое творчество не всегда приносит радость. История знает примеры, когда математические творения становились причиной серьезных кризисов. Если мы считаем, что числа используются для подсчета вещей и что отношение между всем сущим во Вселенной можно выразить соотношением обычных чисел, как быть с корнем из двух? А с отрицательными числами? А с квадратным корнем из минус единицы? Творчество порождает монстров, которых нужно «приручить», и для этого требуется смена концепции. Мы смотрим на полотна Пикассо иначе, чем на картины Веласкеса. Мы слушаем Стравинского или Майлса Дейвиса иначе, чем Баха или Генделя.

В чем состоит загадка творчества? Существуют ли правила созидания?

Считается, что математик-творец находит ключ к решению задачи в моменты удивительного озарения. Можно было бы сказать, что истинный математик обладает неким даром, которого лишены другие и который помогает ему преодолевать трудности. В его голове что-то «щелкает», и мрак рассеивается. Как и в любых других областях, некоторые люди обладают большими способностями к математике, чем другие. Тем не менее цель автора этой книги — рассказать о правилах творчества и его свойствах и показать, что творчество доступно многим.

Вначале мы покажем, как некоторые величайшие математические творения вызывали крупные кризисы. Затем мы постараемся развеять миф о том, что найти решение задачи можно только в момент озарения, и покажем, что решать задачи можно научиться. Далее мы приведем несколько примеров того, какие источники вдохновения для математического творчества существуют вокруг нас, доказав тем самым, что «мы творим, когда задаемся вопросами о жизни». Этому аспекту математики мы посвятили целую главу, в которой рассказали, как автор расширял знания математики в ходе межкультурного взаимодействия. Эта глава иллюстрирует один из важнейших тезисов книги: культура и общество играют фундаментальную роль в математическом творчестве и в математике, которая является продуктом этого творчества.

В предпоследней главе мы посмотрим на предмет с другой стороны и перейдем от творчества в математике к математике в творчестве. Мы покажем, как математику понимают люди, занимающиеся разными видами творчества, в частности дизайном и рекламой. В завершение мы вкратце повторим все изложенное, чтобы выделить уникальные особенности математического творчества и сформулировать его основные правила.

Глава 1

Основы математического творчества

Согласно наиболее распространенной точке зрения, математика относится к точным наукам — именно так ее называют уже много лет в вузах большинства стран. Все обращают внимание на прилагательное «точная», забывая о том, к какому слову оно относится. Студенты, поступая в университет, чтобы изучать математику, изучают прежде всего «точное».

Такой была и остается парадигма математики: точность, корректность, полное отсутствие ошибок и неопределенностей, выбор между черным и белым без малейших оттенков: выбор между прямыми и кривыми, конечным и бесконечным, открытым и замкнутым, корректным и некорректным, хорошим и плохим. Этот выбор неизменно производится на четко определенном пути в соответствии с законами логики, которая применяется к таким же простым и универсальным принципам (по крайней мере, на первый взгляд), как и те, что лежат в основе самой жизни.

В основе этих рассуждений лежит труд тысячелетней давности, книга, превосходная как по форме, так и по содержанию, — «Начала» Евклида. Из основных утверждений, считающихся истинными (постулатов), выводятся новые, не столь очевидные утверждения (теоремы), которые, в свою очередь, могут служить основой других, еще менее очевидных. Совокупность полученных таким образом умозаключений составляет основу геометрии, правильность которой гарантируется законами логики. Все результаты получены не по прихоти их автора, а с помощью логических рассуждений, основанных на первоначальных постулатах.

До недавнего времени «Начала» Евклида служили моделью преподавания математики. Именно поэтому в соответствии с наиболее распространенной концепцией математика представляет собой идеально точную совокупность корректных умозаключений, связанных между собой неизменной последовательностью «аксиома — теорема — доказательство — следствие — упражнение». Такой была математика, так она преподавалась, так она изучалась и воспринималась.

Тем не менее можете ли вы поверить, что Евклид был настолько гениален, что создал «Начала» сразу, целиком, после того как определил постулаты геометрии?

* * *

ЕВКЛИД И ЕГО МЕТОД

О создателе крупнейшей математической парадигмы известно немногое. Он жил около 300 года до н. э. и учился в Александрии. Самой известной его работой, несомненно, являются «Начала», состоящие из тринадцати книг и содержащие более 400 утверждений, выведенных из пяти постулатов, пяти общих утверждений, или аксиом, и 132 определений. Ниже приведены примеры постулатов, аксиом и определений.

Определение 1: Точка есть то, что не имеет частей.

Определение 2: Линия же — длина без ширины.

Определение 3: Края же линии — точки.

Постулат 1: От всякой точки до всякой точки можно провести прямую.

Постулат 2: Ограниченную прямую можно непрерывно продолжать по прямой.

Постулат 3: Из всякого центра всяким раствором может быть описан круг.

Аксиома 1: Равные одному и тому же равны и между собой.

Аксиома 2: И если к равным прибавляются равные, то и целые будут равны [1] .

Copyrights and trademarks for the book, and other promotional materials are the property of their respective owners. Use of these materials are allowed under the fair use clause of the Copyright Law.