Жизнь Георга Кантора

Френкель Адольф

Жанр: Прочая научная литература  Научно-образовательная    Автор: Френкель Адольф   
Закладки
Размер шрифта
A   A+   A++
Cкачать
Читать

Адольф Френкель.

Жизнь Георга Кантора

1. Период развития (1845-1871)

Георг Фердинанд Людвиг Филипп Кантор, создатель теории множеств, одного из величайших новых явлений в мире науки, родился в Петербурге 19 февраля ст. стиля (3 марта нов. стиля) 1845 г. Отец его Георг Вольдемар Кантор, родом из Копенгагена, прибыл в Петербург в молодости; он держал там маклерскую контору под собственным именем, иногда же под названием «Кантор и К.» Усердный и удачливый коммерсант, он достиг крупного успеха и оставил после смерти (1863 г.) весьма значительное состояние; по-видимому, он пользовался и в Петербурге, и позже в Германии высоким уважением. По болезни легких он в 1856 г. переселился с семьей в Германию; там он вскоре избрал местом пребывания Франкфурт на Майне, где жил на положении рантье. Мать Кантора, Мария, урожденная Бем, происходила из семьи, многие члены которой были одарены в разных областях искусства; влияние ее проявилось, без сомнения, в богатой фантазии сына. Дед его, Людвиг Бем, был капельмейстером; брат деда Иозеф, живший в Вене, был учителем знаменитого виолончелиста-виртуоза Иоахима; брат Марии Кантор был также музыкантом, а сестра ее Аннета имела дочь-художницу, преподававшую в Мюнхенской школе художественных ремесел. Художественная жилка заметна также у брата Георга Кантора, Константина, бывшего талантливым пианистом, и у сестры его Софии, особенно склонной к рисованию.

Одаренный мальчик, посещавший в Петербурге начальную школу, уже очень рано проявил страстное желание приступить к изучению математики. Отец его, однако, не согласился с этим, считая более обещающей в отношении заработка профессию инженера. Сын сначала подчинился; он посещал некоторое время гимназию в Висбадене, а также частные школы во Франкфурте на Майне; затем поступил, весной 1859 г., в провинциальное реальное училище Великого герцогства Гессенского в Дармштадте, где преподавали также латынь; оттуда он перешел в 1860 г. на общий курс Высшей ремесленной школы (позже Высшей технической школы). Отец руководил его образованием, предъявляя необычно высокие требования; особую важность придавал он воспитанию энергии, твердости характера и пронизывающей всю жизнь религиозности; в частности же он подчеркивал важность полного овладения основными современными языками. Отец наставлял его (в письме по поводу конфирмации в 1860 г.) держаться твердо, вопреки всякой вражде, и всегда добиваться своего; призыв этот не раз вспоминался сыну в часы тяжелых испытаний и, возможно, именно этому отцовскому воспитанию мы обязаны тем, что творческий дух его не был преждевременно сломлен и плоды его не были потеряны для потомства.

С течением времени глубокое влечение сына к математике не могло не подействовать на отца, письма которого свидетельствуют также об его уважении к науке. В письме из Дармштадта, датированном 25 мая 1862 г. и представляющем первое сохранившееся письмо Кантора, сын мог уже выразить отцу благодарность за одобрительное отношение к его планам: «Дорогой папа! Ты можешь себе представить, как обрадовало меня твое письмо; оно определяет мое будущее. Последние дни я провел в сомнении и неуверенности; и не мог прийти ни к какому решению. Долг и влечение постоянно были в борьбе. Теперь я счастлив, видя, что не огорчу тебя, последовав в моем выборе собственной склонности. Надеюсь, дорогой отец, что сумею еще доставить тебе радость, потому что душа моя, все мое существо живет в моем призвании; человек делает то, что он хочет и может, и к чему влечет его неведомый, таинственный голос!..»

Осенью 1862 г. Кантор приступил к занятиям в Цюрихе, откуда он, впрочем, уже после первого семестра ушел вследствие смерти отца. С осени 1863 г. он изучал математику, физику и философию в Берлине, куда триумвират Куммера, Вейерштрасса и Кронеккера привлекал лучшие дарования, возбуждая умы (тогда еще довольно узкого) круга слушателей в самых различных направлениях. Лишь весенний семестр 1866 г. провел он в Геттингене. Сильнейшее влияние на его научное развитие оказал, бесспорно, Вейерштрасс. Замечательно и характерно для широты взглядов Вейерштрасса, для его непредубежденного и проницательного суждения, с каким сочувственным пониманием и как рано оценил он нетрадиционные идеи своего ученика, ответив этим на глубокое уважение, которое тот неизменно оказывал ему в течение всей жизни, вопреки преходящим размолвкам. В берлинские годы Кантор входил не только в Математическое Общество, но и в более узкий круг молодых коллег, еженедельно встречавшихся в трактире Ремеля; к этому кругу принадлежали, не считая случайных гостей, Генох (будущий издатель “Fortschritte” («Успехов»), Лампе, Мертенс, Макс Симон, Томе; последний из них был особенно близок Кантору. Далее, к его товарищам по Берлинскому университету принадлежал Г. А. Шварц, бывший на два года старше; впоследствии, впрочем, он встретил идеи Кантора с сильнейшим недоверием, в противоположность своему учителю Вайерштрассу, и до самого конца жизни особо предостерегал от них, подобно Кронеккеру, своих студентов. 14 декабря 1867 г. двадцатидвухлетний студент защитил в Берлинском университете дипломную работу, возникшую из глубокого изучения Disquisitiones arithmeticae («Исследования по арифметике») и «Теории чисел» Лежандра и оцененную факультетом как “dissertatio docta et ingeniosa” («Ученое и остроумное рассуждение») [1] ; он посвятил ее своим опекунам (одновременно опекунам его брата и сестры). На устном экзамене он получил “magna cum laude” («с особым отличием»). Из трех предложенных им для защиты тезисов особенно характерен третий: “In re mathematica ars propenendi questionem pluris facienda est quam solvendi” (В математике искусство постановки вопросов важнее искусства их решения». Возможно, даже полученные им в теории множеств результаты уступают по значению революционным постановкам вопросов, столь далеко вышедшим в своем влиянии за пределы его собственных трудов.

Кажется, Кантор в течение короткого времени преподавал в Берлине в женской школе; во всяком случае, в 1868 г, он вступил, выдержав государственный экзамен, в известную семинарию Шельбаха, готовившую учителей математики.

Докторская диссертация, давшая Кантор возможность стать весной 1869 г. приват-доцентом университета в Галле, принадлежит, вместе с несколькими небольшими заметками, опубликованными в 1868-72 годах, еще к первому, арифметическому кругу его интересов, к которому он редко возвращался впоследствии [2] . Эти занятия теорией чисел под руководством и при одобрении Кронеккера, не были, впрочем, для Кантора лишь случайным эпизодом. Напротив, он испытал глубокое внутреннее воздействие этой дисциплины, с ее особой чистотой и изяществом. Об этом свидетельствует, наряду с первым, также третий представленный им к защите тезис: “Numeris integros simili modo atque corpora coelestia totum quoddam legibus et relationibus compositum efficere” («Целые числа, подобно небесным телам, трактовать как единое целое, связанное законами и соотношениями»). К раннему времени, возможно уже к этому периоду, относится также установление связей между различными теоретико-числовыми функциями и дзета-функцией Римана (примыкающее к работе Римана о простых числах); эта работа была опубликована Кантором лишь в 1880 г., под влиянием заметки Липшица в парижских Comptes Rendus («Докладах»). О дальнейших теоретико-числовых интересах Кантора говорит, кроме его числовой таблицы [3] , также сохранившийся до 1884 г., но не осуществленный план опубликовать в Acta Mathematica, работу о квадратичных формах [4] .

Э. Гейне, бывший ординарным профессором в Галле в то время, когда Кантор защищал там диссертацию, сразу же понял, что в его молодом коллеге необычайная острота ума счастливо соединяется с богатейшей фантазией. Решающее значение имело то обстоятельство, что Гейне вскоре после переезда Кантора в Галле побудил его заняться теорией тригонометрических рядов. Ревностные труды над этим предметом не только завершились рядом существенных достижений, но и привели Кантора на путь к теории точечных множеств и трансфинитным порядковым числам. Работы [1] , [4] , [6] и [7] посвящены уточнению одного утверждения Римана о тригонометрических рядах (и сопутствовавшей этому полемике с Аппелем, в которой подробно рассматривалось понятие равномерной сходимости); в работе же [2] Кантор доказывает теорему о единственности тригонометрического представления [5] . Он стремится обобщить этот результат, отказываясь от каких-либо предположений о поведении ряда на некотором исключительном множестве; это вынуждает его изложить в работе [5] краткий набросок идей, «могущих быть полезными для выяснения отношений, возникающих во всех случаях, когда заданы числовые величины в конечном или бесконечном числе Здесь для точечных множеств вводятся предельные точки и производные (конечного порядка). С этой целью Кантор, с одной стороны, развивает свою теорию иррациональных чисел [6] , вслед за теорией множеств обессмертившую его имя, где иррациональные числа рассматриваются как фундаментальные ряды. С другой стороны, для перехода к геометрии он вводит особую аксиому (аксиому Кантора), одновременно и независимо появившуюся в несколько иной формулировке в книге Дедекинда «Непрерывность и иррациональные числа».

Алфавит

Предложения

Copyrights and trademarks for the book, and other promotional materials are the property of their respective owners. Use of these materials are allowed under the fair use clause of the Copyright Law.